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Abstract. We show that the constrained KP hierarchies and their generalizations are natural
reductions of the multi-component KP hierarchy and that particular solutions of these hierarchies
are obtained in a straightforward way from that of the multi-component KP hierarchy.

1. Introduction

In recent years much attention has been paid to a class of(1 + 1)-dimensional integrable
hierarchies which are certain symmetry reductions of the well known Kadomtsev–Petviashvili
(KP) hierarchy, they are called the constrained KP hierarchies [7, 8, 23]. These integrable
hierarchies also appeared in several different forms in the literature and are called, for
example, the(m, n)th KdV hierarchy [5] and the rational reductions of the KP hierarchy
[25]. Various aspects of these integrable hierarchies such as the bi-Hamiltonian structures and
the construction ofτ -functions were studied in [1–10, 13, 14, 20, 23, 25–27, 30, 32, 33] and
references therein. In this paper we show that this class of integrable hierarchies is, in fact, a
natural reduction of the multi-component KP hierarchy.

Recall that a prototypical reduction procedure to deduce(1 + 1)-dimensional integrable
hierarchies from the KP hierarchy is to require that a certain power of the pseudo-differential
operator of the KP hierarchy is a differential operator; in this way we obtain the so-called
l-reduced KP hierarchy (in the notion of [12]) or the Gelfand–Dickey hierarchy. The usual
procedure to deduce the constrained KP hierarchy from the KP hierarchy is, however, more
elaborate; we need to impose on the pseudo-differential operator of the KP hierarchy the
condition that a certain power of this operator takes the form of a special pseudo-differential
operator or, roughly speaking, the ratio of two polynomial differential operators. In contrast to
the typical reduction procedure for thel-reduced KP hierarchy, the above-mentioned reduction
procedure for the constrained KP hierarchy does not enable us to deduce properties of the
constrained KP hierarchy in a straightforward way from that of the KP hierarchy. The
‘naturality’ of the reduction procedure for the constrained KP hierarchies we present in this
paper means that it is simply a mimic of the typical reduction procedure that reduce the KP
hierarchy to thel-reduced KP hierarchy. For this we are to consider the reductions of the
multi-component KP (mcKP) hierarchy instead of the usual KP hierarchy.

The mcKP hierarchy was introduced in [11, 28, 29], systematic studies of its properties
such as the existence ofτ -functions, the bilinear equations and the construction of the
specialτ -functions using the free-fermion representations can be found in [15, 21, 22]. It
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is viewed in a certain sense as a universal integrable hierarchy, the fact that many well known
integrable hierarchies are certain reductions of the mcKP hierarchy may serve as one of
the interpretations of its universality. Nevertheless, in the literature we can hardly find any
systematic consideration of the reductions of the mcKP hierarchy.

This paper does not intend to give a systematic study of reductions of the mcKP hierarchy
either, what we will do is to present in detail a very special but rather natural reduction of the
mcKP hierarchy which gives rise to the constrained KP hierarchies and their generalizations.
This natural reduction procedure enables us to apply the established theory of the mcKP
hierarchy to the constrained KP hierarchies and their generalizations in a straightforward
way, and thus manifests the universality of the mcKP hierarchy. The properties of the
mcKP hierarchy which we derive in order to perform the reduction may also be useful for
considerations of other types of reductions of the mcKP hierarchy.

This paper is organized as follows. In section 2 we recall the definition of the mcKP
hierarchy and derive some of its general properties, in section 3 we perform the reduction, in
section 4 we show how to obtain special solutions of the constrained KP hierarchies and their
generalizations from that of the mcKP hierarchy.

2. The multi-component KP hierarchy and its properties

Fix a positive integer numberm, let us consider a pseudo-differential operator of the form

L = Im∂ +
∞∑
j=1

Uj(x)∂
−j (2.1)

whereIm is them × m identity matrix,Uj arem × m matrices whose entries are functions
of the variablesx(i)l , i = 1, . . . , m, l = 1, 2, . . . , and∂ = ∑m

i=1 ∂/∂x
(i)
1 . We also need to

consider pseudo-differential operators of the form

C(i) = Eii +
∞∑
j=1

C
(i)
j (x)∂

−j i = 1, 2, . . . , m (2.2)

whereEii is them× m matrix whoseith diagonal element is equal to 1 and all other entries
are equal to zero.

The m-component KP hierarchy is defined as the following infinite set of equations
[11, 15, 21, 28, 29]:

∂L

∂x
(j)
n

= [B(j)n , L]
∂C(i)

∂x
(j)
n

= [B(j)n , C(i)] (2.3)

m∑
i=1

C(i) = Im C(i)L = LC(i) C(i)C(j) = δijC(i)

i, j = 1, 2, . . . , m n = 1, 2 . . .

(2.4)

whereL(i) = C(i)L andB(j)n is the differential part of the pseudo-differential operator(L(j))n.
Given a solution(L,C(i), i = 1, . . . , m) of the mcKP hierarchy (2.3), (2.4) we can

construct a pseudo-differential operator

P = Im +
∞∑
j=1

Pj∂
−j (2.5)
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such that it satisfies the following set of equations:

LP = P∂ (2.6)

C(i)P = PEii (2.7)

∂P

∂x
(i)
n

= (B(i)n − (L(i))n)P
16 i 6 m n > 1

(2.8)

the operatorP is defined up to a multiplication from the right by a pseudo-differential operator
of the formIm +

∑∞
i=1 ai∂

−i with constant diagonal coefficientsai [15]. On the other hand,
any solutionP of (2.8) gives a solution of the mcKP hierarchy through

L = P∂P−1 C(i) = PEiiP−1. (2.9)

Thus we also call (2.8) them-component KP hierarchy which consists of an infinite number
of differential equations, the dependent variables are the entries of the matricesPj , j > 1, and
the time variables arex(i)j .

The Baker function9 of them-component KP hierarchy is defined by

9 = (ψij ) = P exp

( m∑
i=1

ξ(x(i), λ)Eii

)
(2.10)

where

ξ(x(i), λ) =
∞∑
l=1

x
(i)
l λ

l (2.11)

andP is a solution of (2.8).
Denote

P = Im +
∞∑
j=1

Pj∂
−j = (Pij (∂)) (2.12)

Q = P−1 = (Qij (∂)) (2.13)

whereQ has the same form asP . We also denote

P1 = (vij ) (2.14)

herevij are some scalar functions ofx(k)l .
From the definition we know that the Baker function9 satisfies the following linear

equations:

∂9

∂x
(i)
n

= B(i)n 9 i = 1, 2, . . . , m n = 1, 2, . . . . (2.15)

For integers 16 i, j 6 m, let us denote

P̃ij = Pij (∂i) B̃(i)n = (P̃ii∂ni P̃−1
ii )+ (2.16)

where∂i = ∂/∂x(i)1 . We note here that the pseudo-differential operatorP̃ij is obtained from
Pij (∂) by replacing the differential operator∂ with the differential operator∂i , however, the
differential operatorB̃(i)n is not obtained in this way from the(i, i)th element ofB(i)n .
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Lemma 1. The functionsψij defined in (2.10) satisfy the following equations:

∂ψlj

∂x
(i)
n

= Ã(l,i)n (∂i)ψij
∂ψij

∂x
(i)
n

= B̃(i)n (∂i)ψij
i, j, l = 1, 2, . . . , m l 6= i n = 1, 2, . . .

(2.17)

whereÃ(l,i)n are differential operators of∂i = ∂/∂x(i)1 with ordern− 1, Ã(l,i)1 = vli , andB̃(i)n
are defined in (2.16).

Proof. Since the pseudo-differential operatorQ is of the same form asP , by using (2.15) we
know that forl 6= i

∂ψlj

∂x
(i)
1

=
m∑
k=1

(Pli ∂Qik)+ψkj = (Pli ∂Qii)+ψij = vliψij . (2.18)

The above equation and (2.15) lead to

∂ψlj

∂x
(i)
n

=
m∑
k=1

(Pli ∂
nQik)+ψkj =

m∑
k=1

W
(l,i)
n,k (∂k)ψkj (2.19)

whereW(l,i)
n,k (∂k) is a differential operator of∂k which is independent of the indexj . We claim

thatW(l,i)
n,j (∂j ) = 0 unlessj = i. Indeed, from the definition of the Baker function it follows

that

ψij = Pijeξ(x(j),λ) = (δij +O(λ−1)) exp

[ ∞∑
µ=1

x(j)µ λµ
]

(2.20)

so we have

W
(l,i)
n,k (∂k) ψkj = O(λ−1) eξ(x

(j),λ) k 6= j
W

(l,i)
n,j (∂j )ψjj = (cjλNj +O(λNj−1)) eξ(x

(j),λ)

where we have assumed that the leading term of the operatorsW
(l,i)
n,j (∂j ) are cj ∂

Nj
j , the

coefficientscj and the positive integerNj may also depend onl, i, n. On the other hand,
for j 6= i we have

∂ψlj

∂x
(i)
n

= O(λ−1) eξ(x
(j),λ). (2.21)

Hence it follows thatW(l,i)
n,j (∂j ) = 0 whenj 6= i.

Now for l 6= i, from

∂ψli

∂x
(i)
n

= W(l,i)
n,i (∂i)ψii

and (2.20) it follows that the order of the differential operatorW
(l,i)
n,i (∂i) is equal ton − 1.

Putting

Ã(l,i)n (∂i) = W(l,i)
n,i (∂i)

we have proved the first set of equations of the lemma.
In a similar way we can show that there exist differential operatorsZ(i)n (∂i) of ∂i with

ordern such that
∂ψij

∂x
(i)
n

= Z(i)n (∂i)ψij . (2.22)
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From the definition of the Baker function we have

ψii = Pii(∂) eξ(x
(i),λ) = Pii(∂i) eξ(x

(i),λ) = P̃ii eξ(x
(i),λ)

so

∂ψii

∂x
(i)
n

= ∂P̃ii

∂x
(i)
n

eξ(x
(i),λ) + P̃ii∂

n
i P̃
−1
ii ψii

= B̃(i)n ψii +

(
∂P̃ii

∂x
(i)
n

P̃−1
ii + (P̃ii∂

n
i P̃
−1
ii )−

)
ψii.

Since(∂P̃ii/∂x(i)n )P̃
−1
ii +(P̃ii∂ni P̃

−1
ii )− is an integral operator, it follows from (2.22) (takej = i)

and the above equation that

∂P̃ii

∂x
(i)
n

= −(P̃ii∂ni P̃−1
ii )−P̃ii (2.23)

and

Z(i)n = B̃(i)n .
The lemma is proved. �

From now on we fix an integerr with 16 r < m. We introduce the following notation:

P (r)(∂̂) =


P11(∂̂) · · · P1r (∂̂)

...
. . .

...

Pr1(∂̂) · · · Prr(∂̂)

 9(r) =

 ψ11 · · · ψ1r

...
. . .

...

ψr1 · · · ψrr

 (2.24)

2(r) =

 ψ1(r+1) · · · ψ1m

...
. . .

...

ψr(r+1) · · · ψrm

 8(r) =

 ψ(r+1)1 · · · ψ(r+1)r

...
. . .

...

ψm1 · · · ψmr

 (2.25)

where∂̂ = ∂1 + ∂2 + · · · + ∂r . From lemma 1 we have the following proposition:

Proposition 1. For any integers16 i 6 r andn > 1 we have

∂9(r)

∂x
(i)
n

= B(i,r)n (∂̂)9(r) (2.26)

∂2(r)

∂x
(i)
n

= B(i,r)n (∂̂)2(r) (2.27)

∂8(r)

∂x
(i)
n

= G(i,r)
n (∂̂)9(r) (2.28)

∂P (r)(∂̂)

∂x
(i)
n

= −(P (r)(∂̂) Eii ∂̂n(P (r)(∂̂))−1)−P (r)(∂̂) (2.29)

where

B(i,r)n (∂̂) = (P (r)(∂̂) Eii ∂̂n(P (r)(∂̂))−1)+ (2.30)

G(i,r)
n (∂̂) is a matrix differential operator of ordern − 1, and for any pseudo-differential

operatorS, S− denotes its integral part; the definition of the matrixEii is the same as that of
(2.2) but here it is ar × r matrix instead of anm×m matrix.
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Proof. By using lemma 1 and formula (2.18) we know that there exist matrix operators
H(i,r)
n (∂̂) such that

∂9(r)

∂x
(i)
n

= H(i,r)
n (∂̂)9(r). (2.31)

The definition of the Baker function9 gives us

9(r) = P (r)(∂̂) diag(eξ(x
(1),λ), . . . ,eξ(x

(r),λ)) (2.32)

from which it follows that

∂9(r)

∂x
(i)
n

= ∂P (r)(∂̂)

∂x
(i)
n

(P (r)(∂̂))−19(r) + P (r)(∂̂) Eii ∂̂
n(P (r)(∂̂))−19(r)

= ∂P (r)(∂̂)

∂x
(i)
n

(P (r)(∂̂))−19(r) + (P (r)(∂̂) Eii ∂̂
n(P (r)(∂̂))−1)−9(r)

+ (P (r)(∂̂) Eii ∂̂
n(P (r)(∂̂))−1)+9

(r)

16 i 6 r n = 1, 2, . . . (2.33)

hence (2.26) and (2.29) follow from (2.31) and (2.33). Since the forms of the equations in
(2.17) do not depend on the indexj , we see that (2.27) is also valid due to equation (2.26).
Finally, equation (2.28) follows from (2.17). The proposition is proved. �

Corollary 1. 9(r) is a Baker function of ther-component KP hierarchy if we look at9(r) as
a matrix function of the variablesx(i)n (i = 1, 2, . . . , r; n > 1); in particular, for any integer
1 6 i 6 m, ψii is a Baker function of the KP hierarchy if we look at it as a function of the
variablesx(i)1 , x

(i)
2 , . . . .

Remark. The result of the above corollary can also be seen from the bilinear equations of the
multi-component KP hierarchy given in [11, 15, 21, 29] and from our idea that them-component
KP hierarchy is obtained by gluing togetherm pieces of the KP hierarchy.

We further introduce the following notation:

Q(r) =

 v1(r+1) · · · v1m

...
. . .

...

vr(r+1) · · · vrm

 R(r) =

 v(r+1)1 · · · v(r+1)r

...
. . .

...

vm1 · · · vmr

 (2.34)

wherevij are defined in (2.14).

Corollary 2. For any integers16 i 6 r andn > 1, the following identity holds true:

∂Q(r)

∂x
(i)
n

= B(i,r)n (∂̂)Q(r). (2.35)

Proof. From the definition of the Baker function9 we see that

2(r) = (Q(r)λ−1 +O(λ−2)) diag(eξ(x
(r+1),λ, . . . ,eξ(x

(m),λ). (2.36)

Substitute the above form of2(r) into equation (2.27) and compare the coefficient ofλ−1, we
obtain equation (2.35). The corollary is proved. �



Reduction of the multi-component KP hierarchy 6467

Corollary 3. If we denote

B(i,r)n (∂̂) = Eii ∂̂n +B1∂̂
n−1 + · · · +Bn (2.37)

G(i,r)
n (∂̂) = G1∂̂

n−1 +G2∂̂
n−2 + · · · +Gn (2.38)

then we have

G1 = R(r)Eii Gl+1 = R(r)Bl − ∂Gl

∂x̂
l = 1, 2, . . . , n− 1 (2.39)

∂R(r)

∂x
(i)
n

= −(B(i,r)n )∗R(r) (2.40)

here we have denoted∂/∂x̂ =∑r
l=1 ∂/∂x

(i)
1 , and

(B(i,r)n )∗R(r) =
n∑
l=0

(−1)l
∂l(R(r)Bn−l)

∂x̂l
B0 = Eii. (2.41)

Proof. From lemma 1 it follows thatG(i,r)
1 (∂̂) = R(r)Eii . From the compatibility conditions

of the linear equations (2.26), (2.28) and

∂8(r)

∂x
(i)
1

= G(i,r)
1 (∂̂)9(r) i = 1, 2, . . . , r (2.42)

we know that for 16 i, j 6 r the following equality holds true:

∂R(r)

∂x
(i)
n

Ejj +R(r)EjjB
(i,r)
n = ∂G(i,r)

n

∂x
(j)

1

+G(i,r)
n B

(j,r)

1 (∂̂) (2.43)

these equalities lead to

∂R(r)

∂x
(i)
n

+R(r)B(i,r)n = ∂G(i,r)
n

∂x̂
+G(i,r)

n ∂̂. (2.44)

Now (2.39) and (2.40) follow directly from (2.44). The corollary is proved. �

3. A reduction of the multi-component KP hierarchy

Recall that thel-reduced KP hierarchy (the Gelfand–Dickey hierarchy) is reduced from the KP
hierarchy by imposing the requirement that thelth power of the pseudo-differential operator of
the KP hierarchy be a differential operator [12]. Similarly, we impose the following reduction
condition on them-component KP hierarchy (2.3), (2.4):

r∑
l=1

dkl (L
(l))k +L(r+1) + · · · +L(m) =

r∑
l=1

dkl B
(l)
k +

m∑
l=r+1

B
(l)
1 (3.1)

where 16 r < m, k is a positive integer,d1, . . . , dr are nonzero constants anddkl 6= dkj for
l 6= j .
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Lemma 2. Under the constraint (3.1) we have( r∑
l=1

dkl B
(l,r)
k (∂̂)

)
9(r) +Q(r)8(r) = λk 9(r)3(r) (3.2)

∂8(r)

∂x̂
= R(r)9(r) (3.3)

∂9(r)

∂x
(i)
n

= B(i,r)n (∂̂)9(r) 16 i 6 r, n > 1 (3.4)

∂8(r)

∂x
(i)
n

= G(i,r)
n (∂̂)9(r) 16 i 6 r, n > 1 (3.5)

where∂̂, 9(r), 8(r), B(l,r)n ,Q(r), R(r) andG(i,r)
n are defined in (2.24), (2.25), (2.30), (2.34),

corollary 3 and3(r) = diag(dk1, d
k
2, . . . , d

k
r ).

Proof. From (2.7) it follows that

L(i) = PEii∂P−1

so

L(i)9 = λ9Eii .
Using (2.15), (3.1) and the above relation we obtain
r∑
l=1

dkl
∂9

∂x
(l)
k

+
m∑

l=r+1

∂9

∂x
(l)
1

=
r∑
l=1

dkl B
(l)
k 9 +

m∑
l=r+1

B
(l)
1 9 (3.6)

=
( r∑
l=1

dkl (L
(l))k +

m∑
l=r+1

L(l)
)
9 = 9

( r∑
l=1

λkdkl Ell +
m∑

l=r+1

λEll

)
.

(3.7)

From the definition of9(r) given in (2.24) it follows that
r∑
l=1

dkl
∂9(r)

∂x
(l)
k

+
m∑

l=r+1

∂9(r)

∂x
(l)
1

= λk9(r)3(r). (3.8)

On the other hand, from (2.17), (2.26) and the definition given in (2.24), (2.25) and (2.34) we
obtain

r∑
l=1

dkl
∂9(r)

∂x
(l)
k

+
m∑

l=r+1

∂9(r)

∂x
(l)
1

=
r∑
l=1

dkl B
(l,r)
k (∂̂)9(r) +Q(r)8(r). (3.9)

It follows immediately from (3.8) and (3.9) that (3.2) holds true. Finally, equation (3.3) is
derived from (2.42), equations (3.4) and (3.5) are just equations (2.26) and (2.28), respectively.
The lemma is proved. �

Denote

L̂(i) = P (r)(∂̂)Eii ∂̂(P (r)(∂̂))−1 (3.10)

L̂ =
r∑
l=1

dlL̂
(l). (3.11)

Then from the definition of9(r) we find

L̂9(r) = λ9(r) diag(d1, . . . , dr) (3.12)
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which leads to

L̂k9(r) = λk9(r)3(r). (3.13)

So from (3.2) and (3.3) we obtain

L̂k =
r∑
l=1

dkl B
(l,r)
k (∂̂) +Q(r)∂̂−1R(r)

= 3(r)∂̂k +W(k,r)
1 ∂̂k−1 + · · · +W(k,r)

k +Q(r)∂̂−1R(r). (3.14)

Remark. From the definition of the pseudo-differential operatorP we see that the diagonal
elements of the matrixW(k,r)

1 are equal to zero.

For an arbitrary set of thekth roots of unity(ε1, . . . , εr ) the following identity holds true:( r∑
l=1

εldlL̂
(l)

)k
= L̂k

this fact together with the requirement thatdkl 6= dkj for distinct l, j enables us to express the

entries of the coefficient matrices of the matrix pseudo-differential operatorL̂(i) in terms of
polynomials of the entries of the matricesW(k,r)

i ,Q(r), R(r) and their derivatives with respect
to ∂̂. Thus we have the following proposition:

Proposition 2. Under the constraint condition (3.1) them-component KP hierarchy (2.3),
(2.4) gives rise to the following hierarchies of evolutionary equations:

∂L̂k

∂x
(i)
n

= [B(i,r)n , L̂k] (3.15)

∂Q(r)

∂x
(i)
n

= B(i,r)n Q(r) (3.16)

∂R(r)

∂x
(i)
n

= −(B(i,r)n )∗R(r)

i = 1, 2, . . . , r n > 1
(3.17)

whereB(i,r)n = ((L̂(i))n)+ and (B(i,r)n )∗R(r) are defined in corollary 3. These nonlinear
evolutionary differential equations are expressed in terms of the dynamical variables of the
entries ofW(k,r)

l (l = 1, . . . , k),Q(r), R(r), furthermore, they are the compatibility conditions
of the linear systems (3.2)–(3.5).

When r = 1 andm = 2, we obtain thek-constrained KP hierarchy considered, for
example, in [7, 8, 23]; whenr = 1, m > 2 we obtain the vectork-constrained KP hierarchy
[10]. For generalr,m we obtain the generalizations of the constrained KP hierarchies, which
also appeared in the setting of the generalized Drinfeld–Sokolov construction [18, 19].

In order to obtain a more concrete vision of the generalized constrained KP hierarchy
(3.15)–(3.17), we give two examples below withr = 1, m > 1 andr = k = 2, respectively,
we write down some equations contained in these hierarchies.

Example 1. Let us taker = 1 andd1 = 1. Then the hierarchy of equations (3.15)–(3.17) is
just the vectork-constrained KP hierarchy [10]. In particular, if we takek = 2, then (3.14)
gives

L̂2 = ∂2
1 +W(2,1)

1 ∂1 +W(2,1)
2 +Q(1)∂̂−1R(1) (3.18)
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hereW(2,1)
1 = 0 and we have used̂∂ = ∂1. To simplify the notations, we denote

W
(2,1)
2 = 2u Q(1) = (q1, . . . , qm−1) R(1) = (r1, . . . , rm−1)

T

we also denotex(1)l simply byxl(l > 1). Then from (3.18) we have

L̂ = ∂1 + u∂−1
1 + 1

2

(m−1∑
l=1

qlrl − ux1

)
∂−2

1 + · · · . (3.19)

The first set of nontrivial equations of (3.15)–(3.17) is given by

qi,x2 = qi,x1x1 + 2uqi (3.20)

ri,x2 = −ri,x1x1 − 2uri (3.21)

ux2 =
m−1∑
l=1

(qlrl)x1

i = 1, 2, . . . , m− 1

(3.22)

which is the generalization of the Yajima–Oikawa system [31].

Example 2. Let us taker = k = 2. Then (3.14) gives

L̂2 = 3(2)∂̂ +W(2,2)
1 ∂̂ +W(2,2)

2 +Q(2)∂̂−1R(2) (3.23)

where∂̂ = ∂/∂x(1)1 + ∂/∂x(2)1 . Denote

W
(2,2)
1 =

(
0 w1

v1 0

)
W

(2,2)
2 =

(
u1 w2

v2 u2

)
and

Q(2) =
(
q11 q12 · · · q1,m−2

q21 q22 · · · q2,m−2

)
R(2) =

(
r11 r21 · · · rm−2,1

r12 r22 · · · rm−2,2

)T
then from (3.23) we find

L̂ = d1L̂
(1) + d2L̂

(2)

=
(
d1 0
0 d2

)
∂̂ +

(
0 (1/(d1 + d2))w1

(1/(d1 + d2))v1 0

)
+ (aij )∂̂

−1 + · · · (3.24)

where

a11 = 1

2d1

(
u1− 1

(d1 + d2)2
v1w1

)
a22 = 1

2d2

(
u2 − 1

(d1 + d2)2
v1w1

)
a12 = 1

d1 + d2

(
w2 − d1

d1 + d2
w1,x̂

)
a22 = 1

d1 + d2

(
v2 − d2

d1 + d2
v1,x̂

)
here we have denoted(∂/∂x(1)1 +∂/∂x(2)1 )w1 byw1,x̂ and(∂/∂x(1)1 +∂/∂x(2)1 )v1 byv1,x̂ . Similar
notations will also be used below.

From (3.24) we obtain

(L̂(1))+ =
(

∂̂ (1/(d2
1 − d2

2))w1

(1/(d2
1 − d2

2))v1 0

)

(L̂(2))+ =
(

0 (1/(d2
2 − d2

1))w1

(1/(d2
2 − d2

1))v1 ∂̂

)
.
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The first set of nontrivial equations in (3.15)–(3.17) is given by

∂u1

∂x
(1)
1

= u1,x̂ − 1

d2
1 − d2

2

w1v1,x̂ +
1

d2
1 − d2

2

w1v2 − 1

d2
1 − d2

2

w2v1

∂u2

∂x
(1)
1

= 1

d2
1 − d2

2

(v1w2 − v2w1)− 1

d2
1 − d2

2

v1w1,x̂

∂v1

∂x
(1)
1

= −v2 − 2d2
2

d2
1 − d2

2

v1,x̂

∂v2

∂x
(1)
1

= − d2
2

d2
1 − d2

2

v1,x̂x̂ +
1

d2
1 − d2

2

(u1v1− u2v1)−
m−2∑
l=1

q2lrl1

∂w1

∂x
(1)
1

= w2 − d2
1 + d2

2

d2
1 − d2

2

w1,x̂

∂w2

∂x
(1)
1

= − d2
1

d2
1 − d2

2

w1,x̂x̂ +w2,x̂ +
1

d2
1 − d2

2

(u2w1− u1w1) +
m−2∑
l=1

q1lrl2

∂q1i

∂x
(1)
1

= q1i,x̂ +
1

d2
1 − d2

2

w1q2i

∂q2i

∂x
(1)
1

= 1

d2
1 − d2

2

v1q1i

∂ri1

∂x
(1)
1

= ri1,x̂ − 1

d2
1 − d2

2

v1ri2

∂ri2

∂x
(1)
1

= − 1

d2
1 − d2

2

w1ri1

i = 1, 2, . . . , m− 2.

4. Particular solutions for the constrained KP hierarchies and their generalizations

The mcKP hierarchy has a special class of solutions corresponding to which the Baker functions
take the form of polynomials of the inverse of the spectral parameterλ multiplied by the
exponential term. The construction of such a kind of solution of the mcKP hierarchy can
be found in [16, 17, 24], we reproduce the construction here in order to show how to obtain
particular solutions of the generalized constrained KP hierarchy (3.15)–(3.17) from that of the
mcKP hierarchy.

We are to seek Baker functions9 = (ψij ) of them-component KP hierarchy (2.3), (2.4)
which have the form

ψij (λ) = Pij (∂) eξ(x
(j),λ) =

(
δij +

Mj∑
l=1

u
(l)
ij ∂
−l
)

eξ(x
(j),λ) (4.1)

=
(
δij +

Mj∑
l=1

u
(l)
ij λ
−l
)

eξ(x
(j),λ) 16 i, j 6 m (4.2)

whereξ(x(j), λ) are defined in (2.11), andMj are some positive integer numbers. Let us fix a
set of constants

aij , λij i = 1, 2, . . . ,M j = 1, 2, . . . , m (4.3)



6472 Y Zhang

whereM = ∑m
l=1Ml . To specify the coefficientsu(l)ij appearing in the functions (4.1), let us

impose onψij the following systems of algebraic linear equations:

m∑
l=1

ailψjl(λil) = 0 16 i 6 M 16 j 6 m. (4.4)

For any fixedj , we can solve uniquely the unknowns(
u
(1)
j1 , . . . , u

(M1)
j1 , . . . , u

(1)
jm, . . . , u

(Mm)
jm

)
from the system of linear equations in (4.4) provided that the coefficient matrix of the linear
system is non-degenerate,in what follows we always assume that the set of constants (4.3) are
chosen to meet this requirement.

Now let us show by using a standard technique in soliton theory [16, 17, 24] that the
functions (4.1) constructed in this way give rise to a Baker function for them-component KP
hierarchy (2.3), (2.4). To this end, let us denote

φj (λ) = (ψ1j (λ), . . . , ψmj (λ))
T 16 j 6 m. (4.5)

Then the linear systems in (4.4) can be rewritten as
m∑
l=1

ailφl(λil) = 0 16 i 6 M. (4.6)

Define the operators

L = P∂P−1 C(i) = PEiiP−1 L(i) = C(i)L B(i)n = ((L(i))n)+ (4.7)

whereP = (Pij (∂)) is the pseudo-differential operator appearing in (4.1) and((L(i))n)+ is the
differential part of the pseudo-differential operator(L(i))n. Then from these definitions we
have

L(i)9(λ) = λ9(λ)Eii L9(λ) = λ9(λ). (4.8)

We also denote

φ̃j (λ) = ∂φj

∂x
(i)
n

− B(i)n φj 16 i, j 6 m n > 1.

Sinceaij are constants, we see thatφ̃j (λ)also satisfy the linear system (4.6) withφj (λ) replaced
by φ̃j (λ). On the other hand, from (4.1) and the definition ofB(i)n given in (4.7) it follows that

φ̃j (λ) = O(λ−1) eξ(x
(j),λ) (4.9)

since the linear system (4.6) has a unique solution, it follows from (4.9) that

φ̃j (λ) = ∂φj

∂x
(i)
n

− B(i)n φj = 0 (4.10)

thus we have

∂9

∂x
(i)
n

= B(i)n 9 (4.11)

where9 = (φ1, . . . , φm) = (ψij ). We see that9 = (ψij ) which is constructed from (4.1)
and (4.4) is a Baker function of them-component KP hierarchy due to the fact that it satisfies
the linear equations in (4.8) and (4.11). So the pseudo-differential operatorP solves the
m-component KP hierarchy (2.3), (2.4).
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The Baker function9 = (ψij ) can be expressed in a concise form by using theτ -functions.
To do so, let us denote

fj =
(
a1jλ

−Mj

1j eξ(x
(j),λ1j ), . . . , aMjλ

−Mj

Mj eξ(x
(j),λMj )

)T
(4.12)

H =
(
f1,

∂f1

∂x
(1)
1

, . . . ,

(
∂

∂x
(1)
1

)M1−1

f1, . . . , fm,
∂fm

∂x
(m)
1

, . . . ,

(
∂

∂x
(m)
1

)Mm−1

fm

)
(4.13)

we also denote byH(i, j) the matrix which is obtained fromH by replacing the column
(∂/∂x

(j)

1 )Mj−1fj with the column−(∂/∂x(i)1 )
Mi fi . Now define the followingτ -functions:

τ(x(1), . . . , x(m)) = det(H) (4.14)

τij (x
(1), . . . , x(m)) = det(H(i, j)) 16 i 6= j 6 m. (4.15)

Denote

ε(λ) =
(

1

λ
,

1

2λ2
,

1

3λ3
, . . .

)
.

Then by using the relation

eξ(x
(j)−ε(λ),λlj ) = eξ(x

(j),λlj ) − 1

λ

∂

∂x
(j)

1

eξ(x
(j),λlj )

we obtain the following familiar formulae which relate the Baker function to theτ -functions
[15, 21]:

ψii(λ) = τ(x(1), . . . , x(i) − ε(λ), . . . , x(m))
τ (x(1), . . . , x(m))

eξ(x
(i),λ) 16 i 6 m (4.16)

ψij (λ) = τij (x
(1), . . . , x(j) − ε(λ), . . . , x(m))

λτ(x(1), . . . , x(m))
eξ(x

(j),λ) 16 i 6= j 6 m. (4.17)

We remark here that more general Baker functions of the form (4.2) for the mcKP hierarchy can
be constructed by generalizing the condition (4.4) to include derivatives of the Baker functions
with respect to the spectral parameterλ (see [16] for details).

Now we are ready to find particular solutions for the generalized constrained KP hierarchy
(3.15)–(3.17).

Proposition 3. If the constantsλij , 16 i 6 M, 16 j 6 mgiven in (4.3) satisfy the conditions

d
k1
1 λ

k1
i1 = dk2

2 λ
k2
i2 = · · · = dkmm λkmim 16 i 6 M (4.18)

for some non-zero constantsdl and some positive integerskl , then the operators defined in
(4.7) satisfy

m∑
l=1

d
kl
l (L

(l))kl =
m∑
l=1

d
kl
l B

(l)
kl
. (4.19)

Proof. Let us denote

φ̂j (λ) =
m∑
l=1

d
kl
l B

(l)
kl
φj (λ)− λkj dkjj φj (λ) 16 j 6 m

whereφj (λ) are defined in (4.5). Then from the definition ofB(l)kl we see that

φ̂j (λ) = O(λ−1) eξ(x
(j),λ). (4.20)
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On the other hand, from (4.18) we see thatφ̂j (λ) satisfy the linear system (4.6) withφj (λ)
replaced byφ̂j (λ). By using the uniqueness of solution of the linear system (4.6) we see that
φ̂j (λ) = 0. Now the proposition follows from the fact that

m∑
l=1

d
kl
l (L

(l))kl φj (λ) = λkj dkjj φj (λ).

The proposition is proved. �

Condition (4.18) also yields the following identities for theτ -functions defined in (4.14),
(4.15) and for the pseudo-differential operatorL defined in (4.7):

m∑
l=1

d
nkl
l

∂τ

∂x
(l)
nkl

=
( M∑
s=1

d
nk1
1 λ

nk1
s1

)
τ

m∑
l=1

d
nkl
l

∂τij

∂x
(l)
nkl

=
( M∑
s=1

d
nk1
1 λ

nk1
s1

)
τij (4.21)

m∑
l=1

d
nkl
l

∂L

∂x
(l)
nkl

= 0 n > 1. (4.22)

The last identity also follows from (4.19).
Now let us put

k1 = k2 = · · · = kr = k kr+1 = · · · = km = 1 dr+1 = · · · = dm = 1

in (4.18), (4.19), and also require thatdkl 6= dkj for distinctl, j , then the solution of the mcKP
hierarchy satisfies the reduction condition (3.1), so we obtain a solution for the generalized
constrained KP hierarchy (3.15)–(3.17). Whenr = 1, we get the Wronskian-type solutions for
the vectork-constrained KP hierarchy given in [33]. We note that other forms of Wronskian-
type solutions for the vectork-constrained KP hierarchies were found, for example, in [3, 27];
it would be interesting to consider whether these solutions can also be reduced from that of
the mcKP hierarchy.

Solutions of the mcKP hierarchy which satisfy the constraint (4.19) were also obtained
by Kac and van de Leur in [21, 22], where the mcKP hierarchy was considered under the
free-fermionic picture and the relevant solutions were obtained through the vertex operator
realization of the affine Lie algebrâsl(k1 + · · · + km). In particular, using the results of the
previous sections we see that the construction given in [21, 22] also yields a class of solutions
for the constrained KP hierarchies and their generalizations.

5. Conclusion

We considered a reductions of them-component KP hierarchy (2.3), (2.4) by imposing the
natural reduction condition (3.1) on itsL operators and showed that this reduction procedure
gives rise to the constrained KP hierarchies and their generalizations. The existence ofτ -
functions and the construction of specialτ -functions using free-fermion representations for
these hierarchies can be deduced in a natural way from that of the mcKP hierarchy given
in [15, 21, 22]. It also seems quite natural to consider a more general reduction of the mcKP
hierarchy by imposing a reduction condition of the form (4.19), and it is very interesting to write
down (1 + 1)-dimensional integrable hierarchies for such reductions of the mcKP hierarchy.
We will discuss this issue elsewhere.
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